Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
BMC Genomics ; 25(1): 255, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448893

RESUMO

BACKGROUND: Drug addiction is a serious problem worldwide and is influenced by genetic factors. The present study aimed to investigate the association between genetics and drug addiction among Han Chinese. METHODS: A total of 1000 Chinese users of illicit drugs and 9693 healthy controls were enrolled and underwent single nucleotide polymorphism (SNP)-based and haplotype-based association analyses via whole-genome genotyping. RESULTS: Both single-SNP and haplotype tests revealed associations between illicit drug use and several immune-related genes in the major histocompatibility complex (MHC) region (SNP association: log10BF = 15.135, p = 1.054e-18; haplotype association: log10BF = 20.925, p = 2.065e-24). These genes may affect the risk of drug addiction via modulation of the neuroimmune system. The single-SNP test exclusively reported genome-wide significant associations between rs3782886 (SNP association: log10BF = 8.726, p = 4.842e-11) in BRAP and rs671 (SNP association: log10BF = 7.406, p = 9.333e-10) in ALDH2 and drug addiction. The haplotype test exclusively reported a genome-wide significant association (haplotype association: log10BF = 7.607, p = 3.342e-11) between a region with allelic heterogeneity on chromosome 22 and drug addiction, which may be involved in the pathway of vitamin B12 transport and metabolism, indicating a causal link between lower vitamin B12 levels and methamphetamine addiction. CONCLUSIONS: These findings provide new insights into risk-modeling and the prevention and treatment of methamphetamine and heroin dependence, which may further contribute to potential novel therapeutic approaches.


Assuntos
Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estudo de Associação Genômica Ampla , Haplótipos , Polimorfismo de Nucleotídeo Único , Transtornos Relacionados ao Uso de Substâncias/genética , Vitamina B 12 , China , Aldeído-Desidrogenase Mitocondrial
2.
Molecules ; 28(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836709

RESUMO

Van der Waals heterojunctions of two-dimensional atomic crystals are widely used to build functional devices due to their excellent optoelectronic properties, which are attracting more and more attention, and various methods have been developed to study their structure and properties. Here, density functional theory combined with the nonequilibrium Green's function technique has been used to calculate the transport properties of graphene/WS2 heterojunctions. It is observed that the formation of heterojunctions does not lead to the opening of the Dirac point of graphene. Instead, the respective band structures of both graphene and WS2 are preserved. Therefore, the heterojunction follows a unique Ohm's law at low bias voltages, despite the presence of a certain rotation angle between the two surfaces within the heterojunction. The transmission spectra, the density of states, and the transmission eigenstate are used to investigate the origin and mechanism of unique linear I-V characteristics. This study provides a theoretical framework for designing mixed-dimensional heterojunction nanoelectronic devices.

3.
Nanoscale Horiz ; 8(10): 1395-1402, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37477436

RESUMO

Exotic phenomena due to the interplay of different quantum orders have been observed and the study of these phenomena has emerged as a new frontier in condensed matter research, especially in the two-dimensional limit. Here, we report the coexistence of charge density waves (CDWs), superconductivity, and nontrivial topology in monolayer 1H-MSe2 (M = Nb, Ta) triggered by momentum-dependent electron-phonon coupling through electron doping. At a critical electron doping concentration, new 2 × 2 CDW phases emerge with nontrivial topology, Dirac cones, and van Hove singularities. Interestingly, these 2 × 2 CDW phases are also superconducting. Our findings not only reveal a route towards realizing nontrivial electronic characters by CDW engineering, but also provide an exciting platform to modulate different quantum states at the confluence of CDWs, superconductivity, nontrivial topology, and electron-phonon coupling.

4.
Ecotoxicol Environ Saf ; 263: 115214, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413944

RESUMO

Brassica campestris L., a cadmium (Cd) hyperaccumulating herbaceous plant, is considered as a promising candidate for the bioremediation of Cd pollution. However, the molecular mechanisms regulating these processes remain unclear. The present work, using proteome studies combined with a transcriptome analysis, was carried out to reveal the response mechanisms of the hairy roots of Brassica campestris L. under Cd stress. Significant tissue necrosis and cellular damage occurred, and Cd accumulation was observed in the cell walls and vacuoles of the hairy roots. Through quantitative proteomic profiling, a total of 1424 differentially expressed proteins (DEPs) were identified, and are known to be enriched in processes including phenylalanine metabolism, plant hormone signal transduction, cysteine and methionine metabolism, protein export, isoquinoline alkaloid biosynthesis and flavone biosynthesis. Further studies combined with a transcriptome analysis found that 118 differentially expressed genes (DEGs) and their corresponding proteins were simultaneously up- or downregulated. Further Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the 118 shared DEGs and DEPs indicated their involvement in calcium, ROS and hormone signaling-mediated response, including regulation of carbohydrate and energy metabolism, biosynthesis of GSH, PCs and phenylpropanoid compounds that play vital roles in the Cd tolerance of Brassica campestris L. Our findings contribute to a better understanding of the regulatory networks of Brassica campestris L. under Cd stress, as well as provide valuable information on candidate genes (e.g., BrPAL, BrTAT, Br4CL, BrCDPK, BrRBOH, BrCALM, BrABCG1/2, BrVIP, BrGCLC, BrilvE, BrGST12/13/25). These results are of particular importance to the subsequent development of promising transgenic plants that will hyperaccumulate heavy metals and efficient phytoremediation processes.


Assuntos
Brassica , Cádmio , Cádmio/toxicidade , Cádmio/metabolismo , Brassica/metabolismo , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/genética , Perfilação da Expressão Gênica/métodos , Redes e Vias Metabólicas/genética , Transcriptoma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
5.
Foods ; 12(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238797

RESUMO

(1) Background: Organic food produced in environmentally friendly farming systems has become increasingly popular. (2) Methods: We used a DNA metabarcoding approach to investigate the differences in the microbial community between organic and conventional 'Huangguan' pear fruit; and (3) Results: Compared to a conventional orchard, the fruit firmness in the organic orchard had significantly lowered after 30 days of shelf-life storage at 25 °C, and the soluble solids content (SSC), titratable acid (TA), and decay index were higher. There were differences in the microbial diversity between organic and conventional orchards pears. After 30 days of storage, Fusarium and Starmerella became the main epiphytic fungi in organic fruits, while Meyerozyma was dominant in conventional fruits. Gluconobacter, Acetobacter, and Komagataeibacter were dominant epiphytic bacteria on pears from both organic and conventional orchards after a 30-day storage period. Bacteroides, Muribaculaceae, and Nesterenkonia were the main endophytic bacteria throughout storage. There was a negative correlation between fruit firmness and decay index. Moreover, the abundance of Acetobacter and Starmerella were positively correlated with fruit firmness, while Muribaculaceae was negatively correlated, implying that these three microorganisms may be associated with the postharvest decay of organic fruit; (4) Conclusions: The difference in postharvest quality and decay in organic and conventional fruits could potentially be attributed to the variation in the microbial community during storage.

6.
Acta Pharm Sin B ; 13(5): 2086-2106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250150

RESUMO

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

8.
Int J Pharm ; 639: 122945, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37044225

RESUMO

Bacterial keratitis (BK) is an ophthalmic infection caused by bacteria and poses a risk of blindness. Numerous drugs have been used to treat BK, the majority suffered from limited effect owing to their backward antimicrobial and delivery efficacy. Herein, we evaluated the antibacterial effect of a cationic carbon-based nanomaterial, i.e., imidazole-modified graphene quantum dots (IMZ-GQDs), which exhibits disinfection rates of >90% against three typical Gram-positive strains within 3 h owing to the loss of membrane integrity and decline in membrane potential. For ocular application, we further developed IMZ-GQDs-loaded dissolving microneedle patches (IMZ-GQDs MNs) via a typical two-step micromolding method. IMZ-GQDs MNs showed sufficient dissolution and penetration for intrastromal delivery in vitro and successfully overcome the rabbit corneal epithelial layer in vivo. The excellent biocompatibility of IMZ-GQDs MNs was demonstrated both in cell and animal models, and they exhibited low cytotoxicity, low invasiveness and low ocular irritation. The topical application of IMZ-GQDs MNs has the benefits of both high antibacterial activity and effective drug delivery, thereby leading to the resolution of Staphylococcus aureus-induced BK in rabbits in 7 days. Therefore, IMZ-GQDs MNs is a promising approach for BK treatment, which is safe and efficient.


Assuntos
Infecções Oculares Bacterianas , Grafite , Ceratite , Pontos Quânticos , Animais , Coelhos , Sistemas de Liberação de Medicamentos , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/microbiologia , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Antibacterianos
9.
Elife ; 122023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695568

RESUMO

Most of the cholesterol in the plasma membranes (PMs) of animal cells is sequestered through interactions with phospholipids and transmembrane domains of proteins. However, as cholesterol concentration rises above the PM's sequestration capacity, a new pool of cholesterol, called accessible cholesterol, emerges. The transport of accessible cholesterol between the PM and the endoplasmic reticulum (ER) is critical to maintain cholesterol homeostasis. This pathway has also been implicated in the suppression of both bacterial and viral pathogens by immunomodulatory oxysterols. Here, we describe a mechanism of depletion of accessible cholesterol from PMs by the oxysterol 25-hydroxycholesterol (25HC). We show that 25HC-mediated activation of acyl coenzyme A: cholesterol acyltransferase (ACAT) in the ER creates an imbalance in the equilibrium distribution of accessible cholesterol between the ER and PM. This imbalance triggers the rapid internalization of accessible cholesterol from the PM, and this depletion is sustained for long periods of time through 25HC-mediated suppression of SREBPs and continued activation of ACAT. In support of a physiological role for this mechanism, 25HC failed to suppress Zika virus and human coronavirus infection in ACAT-deficient cells, and Listeria monocytogenes infection in ACAT-deficient cells and mice. We propose that selective depletion of accessible PM cholesterol triggered by ACAT activation and sustained through SREBP suppression underpins the immunological activities of 25HC and a functionally related class of oxysterols.


Assuntos
Oxisteróis , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Oxisteróis/metabolismo , Aciltransferases/metabolismo , Colesterol/metabolismo , Membrana Celular/metabolismo , Bactérias/metabolismo
10.
Nature ; 613(7942): 53-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600061

RESUMO

Interlayer electronic coupling in two-dimensional materials enables tunable and emergent properties by stacking engineering. However, it also results in significant evolution of electronic structures and attenuation of excitonic effects in two-dimensional semiconductors as exemplified by quickly degrading excitonic photoluminescence and optical nonlinearities in transition metal dichalcogenides when monolayers are stacked into van der Waals structures. Here we report a van der Waals crystal, niobium oxide dichloride (NbOCl2), featuring vanishing interlayer electronic coupling and monolayer-like excitonic behaviour in the bulk form, along with a scalable second-harmonic generation intensity of up to three orders higher than that in monolayer WS2. Notably, the strong second-order nonlinearity enables correlated parametric photon pair generation, through a spontaneous parametric down-conversion (SPDC) process, in flakes as thin as about 46 nm. To our knowledge, this is the first SPDC source unambiguously demonstrated in two-dimensional layered materials, and the thinnest SPDC source ever reported. Our work opens an avenue towards developing van der Waals material-based ultracompact on-chip SPDC sources as well as high-performance photon modulators in both classical and quantum optical technologies1-4.

11.
Front Biosci (Landmark Ed) ; 28(12): 362, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38179770

RESUMO

Cancer stem cells (CSCs) have been increasingly recognized in recent years. CSCs from human neural tumors are one of the root causes of metastatic tumor progression, therapeutic resistance and recurrence. However, there is a lack of comprehensive literature that systematically consolidates the biomarkers specific to CSCs in neurological cancers. Therefore, this review provides a comprehensive summary of cancer stem cell (CSC) biomarkers for neurological tumors such as glioma, meningioma, medulloblastoma and neurofibroma. It also points out the possible functions of these biomarkers in diagnosis, treatment and prognosis, providing a broader perspective. First, we quantitatively screened key words such as CSCs, biomarkers, and expression by bibliometric analysis and clarified the intrinsic connections between the key words. Then, we describe the CSC biomarkers of major neurological tumors and their pathway mechanisms, and provide an in-depth analysis of the commonalities and differences with the biomarkers of non-CSCs. In addition, many studies have shown that antipsychotic drugs can inhibit tumor growth and reduce the expression of CSC biomarkers, which facilitates targeted therapy against tumors in the nervous system. Therefore, this study will focus on the biomarkers of CSCs in the nervous system, hoping to provide guidance for future in-depth exploration and monitoring of neurological tumors for clinical applications.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias , Humanos , Biomarcadores/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Biomarcadores Tumorais/metabolismo
12.
ACS Nano ; 16(12): 21345-21355, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36378142

RESUMO

Cyclo[18]carbon (C18) is an captivating allotrope of carbon synthesized recently, which has drawn the attention among scientists. There are still few studies on the dynamic behaviors of C18. To gain knowledge in this area, we systematically explored the stacking behaviors and the oxidation kinetics of C18, as well the electronic transport behaviors of C18 oxides, by density functional theory and nonequilibrium Green's function calculations combined with reactive force field molecular dynamics simulations. The parallel-self-assembling behaviors were observed in the stack of two- or three-layer C18. During the oxidation process of C18, we found an evident center-capture effect in which the hollow rings would preferentially attract an O2 molecule into their centers. Moreover, the adsorption of O2 on the O2-doped rings was dramatically enhanced by the O2 at the center of the ring, showing the reactivity-enhancing effect. The excellent electron transport property of central-O2-doped C18 among 13 types of C18 oxides demonstrates the potential of C18 oxides as promising molecular devices for various applications. This study reveals the dynamic behaviors of C18 and provides theoretical guidance for use of C18 and C18 oxides in molecular devices.

13.
Front Microbiol ; 13: 957885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051762

RESUMO

Cow milk consumption (CMC) and alterations of gut bacterial composition are proposed to be closely related to human health and disease. Our research aims to investigate the changes in human gut microbial composition in Chinese peri-/postmenopausal women with different CMC habits. A total of 517 subjects were recruited and questionnaires about their CMC status were collected; 394 subjects were included in the final analyses. Fecal samples were used for studying gut bacterial composition. All the subjects were divided into a control group (n = 248) and a CMC group (n = 146) according to their CMC status. Non-parametric tests and LEfSe at different taxonomic levels were used to reveal differentially abundant taxa and functional categories across different CMC groups. Relative abundance (RA) of one phylum (p_Actinobacteria), three genera (g_Bifidobacterium, g_Anaerostipes, and g_Bacteroides), and 28 species diversified significantly across groups. Specifically, taxa g_Anaerostipes (p < 0.01), g_Bacteroides (p < 0.05), s_Anaerostipes_hadrus (p < 0.01), and s_Bifidobacterium_pseudocatenulatum (p < 0.01) were positively correlated with CMC levels, but p_Actinobacteria (p < 0.01) and g_Bifidobacterium (p < 0.01) were negatively associated with CMC levels. KEGG module analysis revealed 48 gut microbiome functional modules significantly (p < 0.05) associated with CMC, including Vibrio cholerae pathogenicity signature, cholera toxins (p = 9.52e-04), and cephamycin C biosynthesis module (p = 0.0057), among others. In conclusion, CMC was associated with changes in gut microbiome patterns including beta diversity and richness of some gut microbiota. The alterations of certain bacteria including g_Anaerostipes and s_Bifidobacterium_pseudocatenulatum in the CMC group should be important for human health. This study further supports the biological value of habitual cow milk consumption.

14.
Front Oncol ; 12: 831268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480112

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC. Methods: The expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing. Results: PRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low ) to very high (PRSS3High ) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow ) and hypomethylated high-expression (umPRSS3-SVHigh ) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome. Conclusions: These results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.

15.
J Colloid Interface Sci ; 607(Pt 2): 1500-1515, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34583048

RESUMO

Osteoinductive, osteoconductive, and antibacterial properties of bone repair materials play important roles in regulating the successful bone regeneration. In the present work, we developed pH-sensitive gelatin methacryloyl (GelMA)-oxidized sodium alginate (OSA) hydrogels for dual-release of gentamicin sulfate (GS) and phenamil (Phe) to enhance the antibacterial activity and to promote large bone defect repair. Controlled release of GS was achieved through physical blending with GelMA-OSA solution before photo-polymeriaztion, while Phe was encapsulated into mesoporous silicate nanoparticles (MSN) within the hydrogels. In vitro antibacterial studies against Staphylococcus aureus and Escherichia coli indicated the broad-spectrum antibacterial property. Moreover, in vitro cell tests verified the synergistically enhanced osteogenic differentiation ability. Furthermore, in vivo studies revealed that the hydrogels significantly increased new bone formation in a critical-sized mouse cranial bone defect model. In summary, the novel dual-network hydrogels with both antibacterial and osteoinductive properties showed promising potential applications in bone tissue engineering.


Assuntos
Hidrogéis , Osteogênese , Animais , Antibacterianos/farmacologia , Regeneração Óssea , Gelatina/farmacologia , Hidrogéis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Engenharia Tecidual
16.
Curr Eye Res ; 47(1): 91-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165383

RESUMO

PURPOSE: To assess the neuroprotective effects of methylene blue (MB) in a rat model of acute ocular hypertension (AOH) and explore its possible mechanisms. METHODS: Our AOH rat model was obtained with anterior chamber perfusion for 60 min. After that, 100 µM MB was injected into the vitreous cavity immediately after injury. Electroretinogram, fundus photography, optical coherence tomography (OCT) and retina morphology examination were utilized to quantify retinal damage before surgery, as well as 7, 14 and 28 days after. The average number of surviving retinal ganglion cells (RGCs) was counted after fluorescent retrograde labelling with 4% DiI. And TUNEL assay was used to investigate retinal cell apoptosis at 24 hours after AOH. Nrf2 and BACE1 in the retina were determined by RT-qPCR analysis. RESULTS: AOH did produce a severe degeneration effect on the whole retinal layer. Intravitreally injected MB maintained certain retinal thickness after AOH, reduced the destruction of electroretinograms, and enhanced RGCs survival. The average number of TUNEL-labelled cells statistically reduced in the MB-treated retina tissue compared with retina treated with normal saline. The relative mRNA level of Nrf2 was also much higher in the MB-treated retinas after AOH, and the expression of BACE1 had a decline in the AOH + MB group. CONCLUSIONS: MB can protect the retina from AOH injury and the possible mechanism might involve the inhibition of BACE1 expression and the activation of Nrf2 antioxidant pathway.


Assuntos
Pressão Intraocular/fisiologia , Azul de Metileno/administração & dosagem , Hipertensão Ocular/prevenção & controle , Retina/efeitos dos fármacos , Tomografia de Coerência Óptica/métodos , Doença Aguda , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrorretinografia , Inibidores Enzimáticos/administração & dosagem , Injeções Intravítreas , Masculino , Hipertensão Ocular/fisiopatologia , Ratos , Retina/diagnóstico por imagem
17.
Int J Cardiovasc Imaging ; 38(3): 643-651, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34652588

RESUMO

Recent studies have found that some adverse cardiovascular events could also occur in patients with apical hypertrophic cardiomyopathy (ApHCM), which is different with previous studies suggesting benign nature of this condition. Therefore, the present study aimed to observe the clinical prognosis of ApHCM and to identify the predictors of poor prognosis in clinical, echocardiography and cardiac magnetic resonance (CMR). A total of 126 ApHCM patients with both echocardiography and CMR were identified retrospectively from January 2008 to December 2018. Adverse clinical events were defined as a composite of cardiac death, progressive heart failure, myocardial infarction, thromboembolic stroke, appropriate implantable cardioverter-defibrillator (ICD) interventions for ventricular tachycardia or ventricular fibrillation, and new-onset atrial fibrillation (AF). During a mean follow-up of 96.8 ± 36.0 months, clinical events were observed in 34 (27.0%) patients. As compared with patients without clinical events, patients with clinical events were older and had a higher incidence of heart failure. Moreover, patients with clinical events had a higher incidence of non-sustained ventricular tachycardia (NSVT) and had larger left atrial volume index (LAVI), thicker apical thickness, lower peak systolic mitral annular velocity (S') than those without clinical events. In addition, late gadolinium enhancement (LGE) in CMR were more frequently observed in patients with clinical events. Five predictors of poor prognosis were identified: age ≥ 55 years, LAVI ≥ 36.7 ml/m2, S' ≤ 6.7 cm/s, NSVT and LGE. ApHCM was not as benign as expected. Age ≥ 55 years, LAVI ≥ 36.7 ml/m2, S' ≤ 6.7 cm/s along with NSVT and LGE were independent predictors for poor prognosis of ApHCM.


Assuntos
Cardiomiopatia Hipertrófica , Meios de Contraste , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/terapia , Ecocardiografia , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Fatores de Risco
18.
Front Physiol ; 12: 735234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707510

RESUMO

Human periodontal ligament stromal/stem cells (PDLSCs) are ideal candidates for periodontal regeneration and are of significant importance in clinical practice. However, PDLSCs derived from diseased microenvironments exert impaired behavior, which leads to the failure of periodontal regeneration. The epithelial cell rests of Malassez (ERM), which are involved in periodontal homeostasis, are residual cells from Hertwig's epithelial root sheath (HERS). However, the function of ERM remains largely unknown. Therefore, the aim of this study was to evaluate the effect of ERM on the osteogenic potential of PDLSCs from an impaired microenvironment. PDLSCs from healthy donors (H-PDLSCs), periodontitis donors (P-PDLSCs) and human ERM were harvested. Osteogenic evaluation showed a lower osteogenic potential of P-PDLSCs compared to that of H-PDLSCs. Then, we co-cultured ERM with P-PDLSCs, and the data showed that ERM promoted the expression of osteogenic genes and proteins in P-PDLSCs. In addition, we collected the PDLSCs from aged donors (A-PDLSCs) and analyzed the osteogenesis capacity of the A-PDLSCs and A-PDLSCs + ERM groups, which displayed similar results to P-PDLSCs. Finally, we evaluated the Wnt pathway, which is associated with osteogenic differentiation of stromal/stem cells, in A-PDLSCs + ERM and P-PDLSCs + ERM groups, which indicated that suppression of the Wnt pathway may result in an increase in the osteogenic properties of A-PDLSCs + ERM and P-PDLSCs + ERM groups. Taken together, the above findings shed new light on the function of ERM and provide a novel therapeutic for optimizing PDLSCs-based periodontal regeneration.

19.
Langmuir ; 37(38): 11414-11421, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34525804

RESUMO

The control of coalescence and motion of droplets play a significant role in advanced technology and our daily life, and one of the most important approaches is surface design. Here, the microtextured surfaces decorated with wrinkled substrates are designed and studied for coalescence behaviors. The simulation results show that the coalescence speed would be slower on such surfaces due to the downward movement of the droplets induced by the penetration of atoms into the grooves that delays their movement along the coalescence direction, which is considered as a restriction effect. With the increase of the angles and the interval distance of wrinkled structures, the coalescence time becomes longer and the coalescing process becomes unfavorable, resulting from the enhanced restriction effect. More importantly, a composite substrate possessing the original and sub-wrinkled structures has been designed to tune the coalescence dynamics. The results of this work may not only help shed light on understanding the coalescence behaviors on the wrinkled substrates but also propose a feasible method for controlling the liquid coalescence behavior, which is expected to provide some useful implications for practical applications.

20.
Nanoscale Horiz ; 6(10): 801-808, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569583

RESUMO

The standard density functional theory (DFT) based first-principles approach has been widely used for modeling nanoscale electronic devices. A recent experiment, however, reported surprising transport properties of thiol-terminated silane junctions that cannot be understood using the standard DFT approach, presenting a severe challenge for the current computational understanding of electron transport at the nanoscale. Using the recently proposed steady-state DFT (SS-DFT) for nonequilibrium quantum systems, we found that in silane junctions, underlying the puzzling experimental observations is a novel type of intriguing nonequilibrium effect that is beyond the framework of the standard DFT approach. Our calculations show that the standard DFT approach is a good approximation of SS-DFT when silane junctions are near equilibrium, but the aforementioned nonequilibrium effects could drive the thiol-terminated silanes far away from equilibrium even at low biases of around 0.2 V. Further analysis suggests that these nonequilibrium effects could generally exist in nanoscale devices in which there are conducting channels mainly residing at the source contact and close to the bias window. These findings significantly broaden our fundamental understanding of electron transport at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...